Skip to main content

AntiPattern: AbstractionInversion

After trying to understand the AbstractionInversion antipattern, I wonder if this pattern is really a unique pattern and not actually more like a combination of other, more abstract AntiPatterns.

Is AbstractionInversion a special case of code duplication, where a dependend class not only duplicates effort, but also escapes its level in a stack of abstracness layers inside an application?

It seems to be common to most examples I have read so far, that AbstractionInversion occurs in conjunction with code/concept duplication in two dependent modules with diffrent levels of abstraction. To explain my thought I will rely on the ADA RendezVous example mentioned here.

If i.e. a mutex is implemented by using the RendezVous concept, a mutex concept is actually implemented by using something at least as complex as a mutex, and code is likely duplicated.
Furthermore the one-class-one responsibility rule seems violated in the above example, as the abstraction to the gory details of the model relate to the concepts used in order implement the level of abstraction used by a dependend class, that itselfs tries to escape its level of abstraction by using concepts with a much lower level of abstractness that would actually be appropriate for the position of the dependent class in the hierachy of abstractions.

Does AOP solve the problem?

Another observation in the ADA example is, that abstraction invsersion stems from some backdraws of object oriented desing, wich lacks efficient and clear modeling of cross cutting concerns(like Mutexes), and therefore confuses unexperienced developers, by creating the temptation to include certain aspects into strict hierachies of abstractions, aka class hierachies, even if this is not required by the application domain, but merely by technical issues.

Comments

Popular posts from this blog

The purpose of the MOCK

In response to a much nicer blog entry, that can be found here . There are actually several distinct "tests" that make up usual unit tests, among them two that really do stand out: one kind of testing to test method flows, one to test some sort of computation. Mock objects are for the purpose of testing method flows. A method flow is a series of message transmissions to dependent objects. The control flow logic inside the method(the ifs and whiles) will alter the flow in repsonse to the parameters of the method call parameters passed by calling the method under test, depending on the state of the object that contains the method under test and the return values of the external method calls(aka responses to the messages sent). There should be one test method for every branch of an if statement, and usuale some sort of mock control objects in the mock framework will handle loop checking. BTW: I partly use message transmission instead of method invocation to include other kind...

Learning Haskell, functional music

As you might have realized, I started to learn Haskell. One of the most fun things to do in any programming language is creating some kind of audible side effects with a program. Already back in the days when I started programming, I always played around with audio when toying around with a new language. I have found a wonderful set of lecture slides about haskell and multimedia programming, called school of expression. Inspired by the slides about functional music I implemented a little song. Ahh ... and yes it is intended to sound slightly strange . I used the synthesis toolkit to transform the music to real noise, simply by piping skini message to std-out. I used this command line to achieve the results audible in the table: sven@hhi1214a:~/Mukke$ ghc -o test1 test1.hs && ./test1 | stk-demo Plucked -n 16 -or -ip Sound samples: Plucked play Clarinet play Whistle(attention very crazy!) play As always the source... stueck = anfang :+: mitte :+: ende anfang = groovy :+: (Trans ...

Erlang mock - erlymock

NOTE THIS POST IS OUTDATED! The project has evolved and can be found here: ErlyMock Some features Easy to use Design based on easymock Works together with otp: can be used even if the clut is called from another process, by invoking mock:verify_after_last_call(Mock,optional: timeout) custom return functions predefined return functions for returning values, receiving message, throwing exceptions, etc.. erlymock automatically purges all modules that were mocked, after verify() Custom argument matchers: %% Orderchecking types: in_order, out_of_order, stub; %% Answering: {return, ...}|{error, ...}|{throw, ...}|{exit, ...}|{rec_msg, Pid}|{function, Fun(Args) -> RetVal} expect(Mock, Type, Module, Function, Arguments, Answer = {AT, _}) when AT==return;AT==error;AT==throw;AT==exit;AT==rec_msg;AT==function -> call(Mock, {expect, Type, Module, Function, length(Arguments), {Arguments, Answer}}). %% this version of expect is suited for useing custom argument matchers expect(Mock, Type, ...